设一两个加速度值运动的两短距离分别为S1和S2,所用时间分别为t1和t2,则vm^2=2a1s1=2a2s2,与s1+s2=x联立可得vm=根号[2a1a2x/(a1+a2)]
在第一段路程末有最大速度Vm=a1t1,进而有:Vm^2=(a1t1)^2,对第二段距离又有Vm^2=2a2S2=1/2 ×(a2t2^2)×2a2=(a2t2)^2,所以有:(a1t1)^2=(a2t2)^2,即t2=a1t1/a2,总时间t=t1+t2=(a1+a2)t1/a2,因t1=a1/Vm,那么t=(a1+a2)a1/(a2Vm),带入Vm=根号[2a1a2x/(a1+a2)]即可求得结果。
V=a1t1=a2t2
X=V(t1+t2)/2
所以:X=V(V/a1+V/a2)/2
V=根号下[2X(a1+a2)/a1a2]
又X=V(t1+t2)/2
(t1+t2)=2X/V =2X/根号下[2X(a1+a2)/a1a2]
前段过程vm^2=2a1s1
后段过程vm^2=2a2s2
s1+s2=x
得vm=2a1a2x/(a1+a2)
前段时间t1=Vm/a1
后段时间t2=Vm/a2
得整个过程时间t=t1+t2=Vm(1/a1+1/a2)=2a1a2x/(a1+a2)*(1/a1+1/a2)
(1)vm^2/2a1+vm^2/2a2=X
vm=根号下[2X(a1+a2)/a1a2]
(2)X=vm(t1+t2)/2
t1=Vm/a1
t2=Vm/a2
t=t1+t2
由上可得
t=Vm(1/a1+1/a2)=2a1a2x/(a1+a2)*(1/a1+1/a2)